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J .  Phys. A :  Math. Gen. 16 (1983) 1397-1408. Printed in Great Britain 

Representation of quantum mechanical wavefunctions by 
transformation generators: 11. One-dimensional 
time-dependent case 

C Jung and H Kruger 
Fachbereich Physik, Universitat, 6750 Kaiserslautern, West Germany 

Received 9 August 1982, in final form 15 November 1982 

Abstract. Sufficient conditions are given for constructing quantum mechanical wavefunc- 
tions by the sole knowledge of an appropriate sequence of classical canonical transforma- 
tions which map a given Hamiltonian onto the new position variable. The transformation 
kernel for each individual step of this sequence is given by the semiclassical limit expression; 
it is a function of the generator of this transformation step only. The transformation 
kernel for the total transformation and the time-dependent wavefunction are obtained as 
a multiple integral over the product of the transformation kernels of the various intermedi- 
ate steps. The practicability of this procedure is demonstrated by several examples. In 
this paper we consider explicitly time-dependent systems with one degree of freedom. 

1. Introduction 

In a previous paper (Jung and Kruger 1982, hereafter referred to as JK) we have 
shown how for a time-independent system with one degree of freedom the wavefunc- 
tion can be obtained in terms of the generators of an appropriate sequence of classical 
canonical transformations. Now we show how the same method can be applied to 
explicitly time-dependent systems. 

The important quantities for the quantum mechanical representation of time- 
independent canonical transformations are the scalar products of eigenstates of the 
old and new position or momentum operators. In general it is not possible to give 
these transformation matrix elements exactly in terms of known functions. However, 
it has been shown by Miller (1974) how they can be obtained semiclassically for any 
canonical transformation. In this approximation the matrix elements are found in 
terms of the generator of the classical canonical transformation only. In general these 
matrix elements have caustic singularities at turning points and, therefore, are not 
suited for many applications. 

In JK we have. decomposed a given transformation into a sequence of simpler ones 
and we have derived sufficient conditions so that the resulting semiclassical multi-step 
transformation matrix element is free of caustic singularities or is exactly even. Here 
we generalise this technique to time-dependent systems in one degree of freedom. 
In § 2 we explain the notation and the composition of a complicated transformation 
from simple ones. In § 3 we derive sufficient conditions for the exactness of the 
resulting wavefunctions. In § 4 we present some illustrative examples and make some 
final conclusions in 9 5 .  

@ 1983 The Institute of Physics 1397 
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2. Notation and the composition of transformations 

As far as possible we adopt the notation used in JK. We study the composition of 
N - 1 canonical transformations, defining in the two-dimensional phase space a 
sequence of N coordinate systems. qi and p i  are the position and momentum variables 
in the ith coordinate system. In general they are explicitly time-dependent functions 
of qi-l and pl- l .  ai and Bi are the corresponding differential operators. The initial 
coordinate system 1 consists of the standard position and momentum variables. The 
system under study is described classically by a Hamiltonian function Hl(q1, PI ,  t )  or 
quantum mechanically by a Hamiltonian operator fil(a1, il, t )  where 

A1 =H1(x, (h/i)(a/ax), 0 (1) 

with some ordering prescription. t is the time variable. 

particularly simple form 
Our goal is to transform to a final coordinate system N, in which H has the 

(2) 

In order to obtain sufficiently well behaved semiclassical transformation kernels we 
decompose the transformation between the coordinate systems 1 and N into a sequence 
of N - 1 simple ones. In particular we take intermediate steps, for which the exact 
quantum mechanical transformation kernels coincide with the semiclassical 
expressions. Without loss of generality, we may assume that N - 1, the total number 
of steps, is even and that the various transformation steps are defined by generators 
of type two and three alternately. More generally we could choose any sequence of 
types of generators which fulfils only the following requirement: the new variable in 
any generator is the same as the old variable in the generator of the following step, 
but if a transformation is broken into a sequence of simple ones, then the individual 
steps are close to the identity in most cases and the identity transformation and its 
neighbourhood is described most easily by generators of type two or three. 

For a shorter notation we use the abbreviations r = 21 + 2, r f = r  f 1 in the follow- 
ing. The transformation between coordinate systems r -  and r is given by the generator 
F;- (qr-, p, ,  t )  and the transformation between coordinate systems r and r +  is given 
by the generator F; (pr, qr+, t ) .  The lower indices denote the type of generator. By 
analogy with the time-dependent case (see equation (2.80) of Miller (1974) or equation 
(3.25) of Eckelt (197911, we define the following semiclassical transformation kernels: 

H N  (qN, PN, t )  = qh'. 

between coordinate systems r -  and r, and 

between coordinate systems r and r i .  
In the time-independent case cp is interpreted as the scalar product between the 

eigenstates of the old and new position or momentum operators. In the time- 
dependent case this interpretation would not make sense in any case, because 4r- and 
gr may be explicitly time-dependent operators. Therefore, the transformation kernel 
cp is not called a matrix element in this paper. 



A transformation kernel composed of an odd number of steps is exact if it satisfies 
equations of the type ( 4 a )  and (46). For an even number of steps equations of the 
type ( 4 e )  and ( 4 f )  must be satisfied. 

In order to avoid boundary contributions in partial integrations, we choose the 
integration paths in equations ( 5 )  and (6) in such a way that either the integrand 
vanishes at the end points or the integration paths are closed loops in the complex 
plane. Further specification of the paths depends on the boundary conditions for x. 
At the moment we are interested only in constructing solutions to the differential 
equations ( 4 )  and do not care about particular boundary conditions. 

3. Exactness conditions 

Proposition 1 .  A sufficient condition for equations ( 4 a )  and ( 4 6 )  or ( 4 c )  and ( 4 d )  to 
be fulfilled by the semiclassical transformation kernels of equation (3) is that the 
generator of the transformation is of the form 

F ; - ( q r - , ~ r j  t ) = ~ r f ( q r - ,  t ) + g ( q r - ,  t )  (7a 

F; (pr ,qr+ ,  t ) = q r + a ( p r ,  O + P ( P r ,  t )  (76) 
where f ,  g, CY, p are differentiable functions. The proof is exactly the same as in the 
time-independent case. Therefore, we do not repeat it here (see proof of proposition 
1 in JK and insert an additional time dependence into the functions f ,  g, CY, p there). 

The semiclassical transformation kernel remains exact if one adds a function h ( p ,  t )  
to the right-hand side of equation ( 7 a )  or a function -y(q,+, t )  to the right-hand side 
of equation (76). It is not necessary to take this generalisation into account because 
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it is always possible to shift any function of the new variable into the generator of 
the next step of the composite transformation. This can be shown by direct calculation, 
exactly as in the time-independent case (see proposition 2 in JK). 

A function y ( q N , t )  in the generator of the last step does not influence the 
dependence of qN on q N - l  and PN-1. If y is independent of time then it does not 
influence the transformation of HN-l(qN-lr p N - ~ ,  t )  onto qN. According to (3) and 
(6 )  y produces the factor exp[(i/h)y(y, t ) ]  in,yl-N(x, y, t ) .  Therefore y can be exploited 
to normalise the function ,y. 

The composition of several transformation kernels, given by generators of the 
form (7), according to equations ( 5 )  and (6) does not result in the exact transformation 
kernel of the total transformation. Therefore, it is necessary to deal with even simpler 
forms of transformations. 

Proposition 2. A sufficient condition for equation (6) to provide the exact transforma- 
tion kernel if the semiclassical transformation kernel is inserted for each step is that 
the individual steps are given by generators of the form 

where a and b are any functions of t. Again the proof is exactly the same as in the 
time-independent case (see proof of proposition 3 in JK and insert a time dependence 
into a, b, g, /3 there). 

Exactly as in the time-independent case, it can be shown that for the composition 
of one transformation step, given by a generator of form (7), with several transforma- 
tion steps, given by generators of the form (8), the exact transformation kernel is 
provided by equations ( 3 ) ,  ( 5 )  and (6 ) .  The composition of several transformation 
steps of form (7) creates an error of order h2 and equation (6 )  yields a uniform 
semiclassical transformation kernel. 

Up to this step everything has been done in complete analogy to the time- 
independent case. The main result of this paper is now to show that the composite 
transformation kernel ,y can be used to obtain a solution of the time-dependent 
Schrodinger equation. 

Proposition 3. Let there be a Hamiltonian function H l ( q l , p l ,  t )  and a sequence of 
canonical transformations such that they map H1 onto HN(qN, ph', t )  = q N .  At most 
one transformation step is of form (7); all other transformation steps are of form (8). 
x ~ + ~ ( x ,  y ,  t )  is the corresponding function defined by equations ( 3 )  and (6). Then for 
any value of the constant E the function 

(9) $ ( E  Ix, t )  = x ' - ~ ( x ,  E, t )  exp[-(i /h)~t]  

ih(alat)$(e Ix, t )  = Hl(x, (hli)(alax), ~ M E I x ,  t ) .  

is a solution of the Schrodinger equation 

To prove this we define a sequence of functions by 
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for k = 1, , , . , N - 1 and show by induction that 

ih(a/at)$k(&ly, t )  =~k(( ik ,$k,  t ) l L k ( E l y ,  t )  (11) 

for any k E (1, . . . , N }  where (ik = y, $k = (h/i)a/ay for k odd and (ik = ih a/ay, $k = y 
for k even. 

kN = ( iN is the multiplication operator by the position variable and it is evident that 

iti(a/at)$N(& lz, t )  = / z ,  t )  = z $ ~ ( E  12, t )  = jz, t ) .  (12) 

ih(a/at)Gk+’(E Iz, t )  =Hk+l((ik+l, $k+l, r)$k+’(e Iz, t ) .  

Assume that I)‘+’ fulfils 

(13) 

We have to show that equation (13) implies the validity of equation (11). We assume 
that k is odd and that the transformation between coordinate systems k and k + 1 is 
given by a generator of type two. There is no loss of generality because for even k 
and for a generator of another type everything would be analogous. For the moment 
let the generator be of form (7), F$(qk,Pk+l, t )=pk+l  f(qk, t)+g(qk, t ) .  Accordingly 

Pk+l = [Pk -g’(qk, r)l/f’(qk, t ) .  (146) 

Here, and in the following, a prime denotes the derivative with respect to the position 
variable and a dot denotes the derivative with respect to the time variable. In order 
to give the quantum mechanical version of (14b) we make use of the ordering 
prescription 

(15) $ k + l  = i$k(f($k, t))-’ +t(f’((ik, f))-l$k -(g‘(q*&, t))/(f’(q*kt t ) ) .  

The corresponding transformation of the Hamiltonian is then 
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Using g k + 1 =  ih 8 / 3 2 ,  f ik+l  = z and the fact that integration by parts does not cause 
boundary contributions we obtain for the last term on the right-hand side of (17) 

I dz c h k + ' ( & I z ,  t)(Hk+l(-ih a/az, z ,  t ) c p k ( y ,  z ,  t ) ) .  (18) 

Because cp fulfils equations (4a)  and (46) this expression can be written as 

I dz 4 ! ' k t 1 ( E I Z ,  t ) ( H k + l ( q k + l ( 4 k ,  f i k ,  t ) ,  P k + l ( g k ,  P*kt t ) ,  t ) c p k ( y ,  2, t ) ) .  

Using equation (46), we note that z in the first term on the right-hand side of (17) 
acts like 

P k + l ( d k ,  f i k ,  t )  = ( f i k  - g ' ( q ^ k ,  f ) ) / f ' ( q * k ,  t )  

Comparison with (166) shows that equation (17) is equivalent to equation (11). In 
the same way we can proceed step by step for all k as long as no ordering problems 
for the operators occur. These ordering problems are the reason that we allow only 
one generator of form (7). Generators of form (7) lead to fractions of operator 
functions (see equation (146 )) and if we combine several transformation steps, we 
have to insert several fractions into each other. Then the correct ordering gives rise 
to higher-order derivatives of the function f than the ones occurring in (17). These 
additional terms are of order h2 or higher. In addition, the composite transformation 
kernel ,y l-N of equation (6) is only correct semiclassically. Therefore, the wavefunction 
I I ,  is only a uniform semiclassical solution of the Schrodinger equation if two or more 
of the transformation steps are given by generators of form (7). Concerning this error 
compare also the discussion of equations (16) and (17) and example 4.3 in J K .  At 
this point it is appropriate to make a few remarks about equation (15). It is not 
possible to take equation (15) as a quantisation prescription of the classical variable 
P k + l  because of the following reasons: it is known that a classical observable of the 
form [ ( q ) p  is not always quantisable and in particular the operator 

where (jk = y ,  f i k  = (h/i) a / a y .  

f[5(G)P*+@6(d)l where @ = (h/i)(a/aq) 

is not always self-adjoint and therefore it does not represent an observable. For a 
detailed discussion of the problems involved see Wan and Viazminsky (1977) and 
Wan and McFarlane (1980). 

The reason for this violation of self-adjointness of @ = (h/ i )  a / d q  is a restriction of 
the range of q ;  after a non-bijective transformation or a complex-valued transforma- 
tion the range of q is no longer the entire real axis and hence p  ̂ = (h/i) a/aq can no 
longer be interpreted straightforwardly as the quantum mechanical operator describing 
an observable momentum. This is related to the fact that non-bijective transformations 
or complex-valued transformations cannot be represented quantum mechanically by 
unitary operators (in this connection see also Leaf 1969 and Kramer et a1 1975). 
Under non-unitary transformations the property of an operator to be self-adjoint is 
not conserved. 

Therefore, we adopt the following pragmatical point of view; we do not claim that 
equation (15) is a quantisation prescription for the classical observable P k + l .  It is only 
a recipe to show how to correlate with P k + l  a differential operator in such a way that 
the Schrodinger equation transforms in the desired way. In the same spirit, the 
complete paper may be viewed as a computational recipe on how to construct solutions 
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to a given differential equation without giving any explanation of the physical meaning 
of the quantities occurring in intermediate steps. 

According to proposition 3 we can construct a solution of the time-dependent 
Schrodinger equation for any value of the constant E .  The general solution is then 
given by 

4 (x ,  t )  =I de ~ ( E I x ,  M E )  

where L ( E )  is any function of E .  The freedom of choosing any function 5 can be used 
to solve the Cauchy problem 

In some cases it may be more convenient to map a given Hamiltonian HI not onto 
qN but onto some other convenient function of qN, p N  and t ,  which is the Hamiltonian 
of some reference system. From the proof of proposition 3, it is obvious.that our 
transformation technique can also be applied in this case. We formulate this statement 
as the following proposition. 

Proposition 4. Let there be given a sequence of k - 1 canonical transformations whose 
generators are of form (8). These transformations map H l ( q l ,  p1, t )  onto Hk(qk, pk, t ) .  
x is the corresponding transformation kernel according to equations (3), ( 5 )  
and (6). Let [(y, t j  be a solution of the Schrodinger equation ih(d/at)[(y, t ) =  
Hk(q*k,Bk, t ) [ ( y ,  t j .  Then $(x, t )  =Jdyx1*'(x, y, t ) t ( y ,  t )  satisfies the equation 

Here we have allowed only for transformation steps of the simple form (8), because 
in general Hk may be any complicated function of qk and p k .  If Hk is sufficiently 
simple, that is, if Hk does not contain any products or fractions of position and 
momentum operators, then it is possible to allow one step of form (7). 

If only semiclassical wavefunctions are desired, then any number of transformation 
steps of the form (7) may be admitted. In this case it may also be convenient to start 
from a uniform semiclassical wavefunction of the reference system Hk and to transform 
it into a uniform semiclassical wavefunction of H1, the system under investigation. 

ih(dldt)+(x, t )  = HI(x,  (hl i ) (a /dx) ,  W ( x ,  t ) .  

4. Examples 

In this section we present a few examples to illustrate the statements of the previous 
section. For simplicity we restrict ourselves to examples which can be solved with 
small effort by conventional methods. So it is easy to compare our solutions with 
the standard solutions. 

4.1. 

The driven harmonic oscillator with the Hamiltonian 
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where K ( t )  is an external time-dependent force. Defining 

-1 h(r) = J '  w sin(w(t - - ~ ) ) K ( T )  d7 

g ( t )  = 1-1 [ ( h ( T ) ) 2 - w 2 ( h ( T ) ) 2 ] ( 2 m ) - 1  d7 

-m 

the sequence of four transformations with the generators 

transforms the Hamiltonian in the following way: 

H2 =p;/2m -p2h( t ) /m  +(h(t))'/2m +mw2q:/2+q2K(t)-q2h(t)  

H3 = p : / 2 m  +mw2q:/2+(h(t))*/2m -w2(h(t))2/2m 

H4 = p;/2m + iwq4p4 

H5 = q5. 

Concerning the occurrence of complex-valued transformations, see the discussion of 
example 4.2 in J K .  

Three transformation steps are of form (8) and one step is of form (7). Therefore, 
we expect to obtain the exact wavefunction from equations (3), (6 )  and (9), namely 

Since we do not care about normalisation, all unimportant constants are combined 
into the unspecified normalisation constant N.  Because p 2  = p1 + h ( t )  and the spectrum 
of p1 being the entire real axis, we integrate CY, the eigenvalue of p 2 ,  over the entire 
real axis and similarly because q3 = q1 + h ( t ) / m  and the spectrum of q1 being the entire 
real axis, we integrate p, the eigenvalue of q3, over the entire real axis. The third 
transformation step is complex and therefore the y integration is not restricted to the 
real axis. For the y integration we use the path that comes in from infinity along the 
positive real axis until it has nearly reached the origin, then encircles the origin once 
and goes back to infinity along the positive real axis on the next sheet of the Riemann 
surface of the branch point at the origin of the y integrand. This integration path is 
the same as the one used in example 4.2 in JK,  which we refer the reader to for more 
details. 

Direct calculation shows that 4 given in (23) is an exact solution of the time- 
dependent Schrodinger equation. To bring (23) into a more familiar form, we put 
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y = - i 2 s ( m h ~ ) ' / ~  and obtain 

~ ( E I x ,  t )  = K  exp[-(x + h ( t ) / m ) 2 m w / 2 h - ( i / h ) ( x h ' ( t ) + g ( t ) + ~ t ) ]  

exp[-s2+2s(x +h(r) /m)(mw/h) ' /*I .  (24) ds S - f - ( E / h W )  

For E = hw(n + 1/2) the s integral is just the Hermite polynomial Xn((mw/h)'/2(x + 
h ( t ) / m ) )  (see equation (22.9.17) of Abramowitz and Stegun 1965). 

If cpn (x) is the nth eigenfunction of the time-independent oscillator, then 

$((n + 1/2)hwIx, t )  = q n ( x  + h ( t ) / m )  exp[-iwt(n + 1/2)-(i/h)g(t)-(i/h)xh'(t)]. (25) 

This result coincides exactly with the one obtained by Kerner (1958) with conventional 
methods. 

Assuming that K ( t )  = 0 for t < 0 and that the initial condition $(x, 0) = $o(x) is to 
be fulfilled, where 

C L O ( X ) = Z  anqn(X), 
n 

then 

$(x, t )  = C  an$((n +%wIx, t )  
n 

is the solution of the time-dependent Schrodinger equation with the prescribed initial 
condition. 

4.2. 

Time-dependent transformations are best suited to treat problems in which a classical 
electromagnetic field is coupled to a material system. For an illustrative example let 
us treat combined gauge and phase transformations within our technique of canonical 
transformations. This provides examples for canonical mappings from one system to 
another reference system which can be treated exactly. We study the non-relativistic 
motion of a particle of charge e in three dimensions. In the particular cases discussed 
here, the transformations of the various degrees of freedom are independent of each 
other and the three-dimensional transformation behaves like three independent one- 
dimensional transformations. 

Let the Hamiltonian in the coordinate system 1 be 

Hi(qi ,p i ,  t ) =  (2m)-'[pi-(e/c)(A(qi, t)-V,,A(qi, t))12 

+ e ( q ( q l ,  t )+c- ' (a/at)A(ql ,  t ) ) +  V ( q l )  (26) 

where A and cp are the potentials of the classical electromagnetic field, and A(ql ,  t )  
is a function of position and time. Applying the transformation given by the generator 

(27a 1 
removes the A-dependent terms in H .  

Because we want to transform the old wavefunction in position space representation 
onto the new wavefunction also in position space representation, we need a sequence 
of transformations for which the old variable in the first generator and the new variable 

F: (41, PZ, t )  = q1 ~2 - ( e / c ) A ( q l ,  t )  
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in the last generator are both position variables. Therefore, we insert as an intermedi- 
ate step the identity transformation given by the generator 

F: ( P Z ,  q3, t )  = - P Z  * 43 (27b) 

and obtain the Hamiltonian 

H3(q3, p3 ,  t )  = :m-'[p3 - (elcIA(q3, t)12 + ecp(q3, t )  + V(q3) .  

Both generators are of form (8) and we expect to transform exact wavefunctions onto 
exact wavefunctions. If [(x, t )  is a solution of the equation 

ih(alat)[(x, t )  =H3(x9 (h/i)v,  t) t(x,  t )  

then according to proposition 4 of B 3 the transformed wavefunction is given by 

4(x,  t )  = d a  dP ( 2 ~ i h ) - ~  exp{(ilh)[xcu - ( e l c ) h ( x ,  r ) -cuPI} t (P ,  t )  

= exp[-(ie/hc)A(x, t ) ] [ ( x ,  t ) .  (28) 

Direct calculation shows that II, fulfils the equation 

ih(alat)II,(x, t )  =Hl(x ,  W i F ,  tM(x, r ) .  

4.3. 

An interesting special case of a gauge transformation is the transformation by which 
Reiss (1970) approximately removes the electromagnetic interaction from 

(29) Hl(q1, p1 ,  t )  = b - h -  ( e / c ) A ( q l ,  t ) Y +  V(q1) .  

The transformation composed of the generators 

maps H 1  onto 

Upper indices on q and A are used to indicate vector components. If we apply the 
correct ordering prescription to the quantum mechanical version of the terms 
p 3  - 4~')V,,A"'(q3, t ) ,  then we find precisely the interaction corrections given by 
equation (12) of Reiss (1970). According to equation (28) the corresponding 
transformation of the wavefunctions is given by multiplication with the factor 
exp[(ilh)(elc)x - A h ,  t ) l .  

For the special case of a space-independent A ,  this transformation is the transfor- 
mation between dipole length and dipole velocity form of the electromagnetic interac- 
tion. In this case 



Wavefunctions created by transformation generators 1407 

is mapped onto 

H3(43, ~ 3 ,  t )  = b - ' p :  + (e/c)q3 * (a/at)A(t) + V(43) 

and the wavefunction is transformed according to G(x, t )  = exp(ie/hc)x * A(t ) ) [ (x ,  t ) .  

5. Conclusions 

We have shown that the quantum mechanical wavefunction can be constructed from 
the generators of an appropriate sequence of classical canonical transformations, if 
these generators fulfil certain restrictions. The wavefunction obtained according to 
equations (3), ( 5 )  and ( 6 )  is exact, if at most one generator is of form (7) and all other 
generators are of form (8). If several generators are of form (7) then the wavefunction 
is a uniform semiclassical approximation to the exact one. In this case the multi-step 
approximate wavefunction is free of caustic singularities in contrast to the primitive 
WKB function, which corresponds to a one-step transform of the Hamiltonian onto 
the new position variable. 

If we are satisfied with uniform semiclassical wavefunctions, we can even generalise 
form (7) for the generators and allow for generators of the form 

F2(4n,~n+1, t ) = f ( q n r  t ) h ( P n + l >  t ) + g ( q n ,  t ) + a ( ~ n + l ,  t )  

where f, g, h, (Y are differentiable functions, and similar expressions for generators of 
the other types. Then the second derivative a2F/aqnapn+1 factorises into a product of 
one function of qn only and one function of pnil  only. This avoids the primitive WKB 

singularities for which it is characteristic that the position of the singularity in one 
variable depends on the value of the other variable. The typical turning-point singular- 
ity is caused by the factor ( E  - V ( X ) ) - " ~  in the WKB wavefunction and the position of 
the singularity in x depends on the E value. If in our multi-step wavefunction each 
step is free of WKB singularities, then we can choose all integration paths in such a 
way that all integrals converge properly and hence a uniformly valid semiclassical 
approximation for the wavefunction is obtained. 

In O Q  2 and 3 the theory has been derived for systems with one degree of freedom. 
In example 4.2 it has been shown how this theory can also be applied to systems 
with several degrees of freedom as long as the various degrees of freedom are 
transformed independently of each other. 

As mentioned earlier we do not intend to give a physical interpretation of the 
quantityp*k+l, given in equation (151, within the framework of this paper. The meaning 
of this quantity is especially unclear in the case of non-bijective transformations and 
in the case of complex-valued transformations. Therefore, it would be an interesting 
problem for future work to clarify these questions. 

Another problem for future investigations is to develop generalisations of our 
transformation techniques to non-separable systems with several degrees of freedom 
and to find transformations which intermix the various degrees of freedom. 
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